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ABSTRACT

Various methods for numerically generating
orthogonal boundary-fitted coordinate systems are dis-
cussed. Simple generating equations are used with
coordinate distributions specified on all of the boun-
daries. Iterative determination of orthogonalizing
source terms for Poisson generating equations con-
verges very slowly. An iterative solution of a new
generating system yields better results and is applied
successfully to several geometries.

ADMINISTRATIVE INFORMATION

This work was performed under NAVSEA Mathematical Sciences Program, "Numerical

Methods for Naval Vehicles," Program Element 61153N, Task Area SR0140301, Task

15321, DTNSRDC Work Unit 1808-010.

INTRODUCTION

Conformal mappings which are analytic functions of a complex variable have

found extensive application to problems in physics. However, these mappings are

restricted to two dimensions and have other limitations which sometimes seriously

diminish their usefulness.

In recent years more general transformations have come into use under the

names of "boundary-fitted" or "surface-oriented" coordinate systems 1,2nams o "bunaryfited or"sufae-oiened cordiat sytem. These

coordinate systems are computed as approximate numerical solutions to elliptic gen-

erating equations. Usually the coordinate distribution on the boundaries of the

physical regions can be specified arbitrarily. The standard conformal system is

obtained only when the Laplace equation is used with a particular boundary coordi-

nate distribution. Thus boundary-fitted coordinates encompass a much larger set of

systems (including three-dimensional ones) than the subset of conformal mappings.

However, these boundary-fitted systems are not, in general, orthogonal. This

*A complete listing of references is given on page 29.
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nonorthogonality can have a deleterious effect on accuracy, stability, and computa-

tional complexity.

Some effort has been devoted to finding an intermediate set of coordinate sys-

tems which retain most of the flexibility of the general boundary-fitted systems

but yet are orthogonal. Potter and Tuttle
3 and Ghia, Hodge, and Hankey

4

presented P method for orthogonalizing a nonorthogonal boundary-fitted system.

Other methods for generating orthogonal systems were presented in a note by Mobley

and Stewart 5 and in work reviewed by Eisemann. 6 However, in all cases the specifi-

cation of coordinate distribution was somehow restricted on at least one boundary.

The present report discusses various methods for creating orthogonal coordinate

systems using simple generating equations. These methods allow coordinate distri-

butions to be specified arbitrarily on all of the boundaries. Iterative determina-

tion of orthogonalizing source terms for Poisson generating equations is attempted

with very limited success. The iterative solution of a new generating system

yields better results and successful application to several geometries is

presented.

METHODS FOR CONSTRUCTING ORTHOGONAL SYSTEMS

Many investigators have used the system of Poisson equations

xx yy
(1)

n +rn =Q
xx yy

to generate numerical transformations from Cartesian coordinates (x,y) to the

transformed coordinates ( ,n) for a variety of geometries. The forcing functions P

and Q in Equation (1) provide a means for influencing or controlling the coordinate

system obtained.
1 '2 '4 '7

- 12

For ease in the numerical solution of Equation (1) all the calculations are

2



done in the transformed plane on a uniform square mesh. Interchanging the depen-

dent and independent variables gives

ax - 2xEn + yx + J2 (Px +Qx ) = 0

(2)

YL -
2 Byn + YY + j2 (pv + Qy ) = 0

-i T T)

where

= X2 + y 2  X X + yY

y = X2 + y2  J =xy - x y
T) ni

Replacing Equation (2) with central difference formulae yields

)xi J= [(ai . + J P ./2)
ij i j j i+l,j

" (a J2  P /2) XilJ + (Y + J 2  Q ./2) 1j+l'
1.1 i j i j Yi-l,j i j i J Yi,j+l

(4)
x x+x

+ (Y J Q. /2) i,j-i 0 12) i+l,j+l + i-l,j-li j i j j Yi,j-i j Yi+l,j+l +Yi-l,j-i

- X -i+'j-I

- Yi-l,j+l Yi+l, j- i j Yi

where aij' ij' Yij and Jij are central difference approximations to the

corresponding variables of Equation (3).

Extensive use has been made of the Poisson and Laplace (PEQE0) generating sys-

tems of Equation (1) in the solution of fluid flow problems 1,2,4,7 Several

8-10
investigators used simple exponential forcing functions to attract lines into

1i
or repel lines from certain regions of the physical plane. Thompson and

3



Plant 1 2 have suggested a method for an a priori determination of P and Q which

will retain boundary spacing throughout the region.

In this report we discuss automatic methods for finding functions P and Q

which assure an orthogonal mesh for a given geometry. The condition for ortho-

gonality, = constant lines perpendicular to Yi = constant lines, is 0 = , since

6= 0 => x / -Y 9/

which is equivalent to

I/Y x1=constant - =constant

That is, the slopes of the two sets of coordinate lines are negative reciprocals of

each other. An orthogonal coordinate system generated in this manner would be a

solution of Equation (2) without the cross derivative terms, i.e.,

+ Tin + j2(px + Qxn) = 0
(5)

ay + yy n + j2 (py + Qy n) = 0

Two important questions arise: Under what conditions do orthogonalizing

source terms P and Q exist? If they exist, are they unique? Since we do not now

have the answers to these questions, it is very important to have a test problem

for which an orthogonal grid is known to exist. Failure to generate an orthogonal

grid for such a problem can then safely be attributed to the method used.

A useful test problem is illustrated in Figures I and 2. These figures show a

rectangular region with uniform boundary coordinate spacing in the horizontal

direction and nonuniform boundary coordinate spacing in the vertical direction.

The grid shown in Figure I was obtained by solving Equation (4) with P =Qz 0 using

successive overrelaxation (SOR). Note that one characteristic of a Laplace-

4



Figure I Laplace Coordinate System with Unequal Spacing on Two Betindaries,
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generated mesh is that the coordinate lines tend toward equal spacing in the inte-

rior for any boundary spacing. This effect can be seen in Figure I near the center

of the region.

An orthogonal grid for this boundary spacing can be generated using Equation

(2) with source terms determined by the boundary coordinate distribution as fol-

lows:

P'. (-xr/x ). and (-v /y3) (6)
13 ~~ ~ n ~ 2 ~ 3 rn fl lj

where i = I and j = I correspond to vertical and horizontal boundaries. This form

for the forcing functions is derived by Plant following a method suggested by

1t 4
Thompson and Ghia. The orthogonal grid thus generated is shown after 40 SOR

iterations in Figure 2. (In this example P : 0 and Q = const. Y- 0.) We have

tested methods for generating orthogonal grids for their ability to reproduce the

coordinate system of Figure 2.

One method of generating a transformation which yields an orthogonal coordi-

nate system is to solve the systems of Equations (2) and (5) simultaneously. These

systems represent four equations in the four unkowns, x, y, P, and Q. A solution,

if it exists, would satisfy = 0.

Unfortunately, solving the combined system of Equations (2) and (5) is not

easy, but iterative methods are applicable. For instance, the finite-difference

versions of Equation (2) can be used to obtain new estimates of x and y using

current values of P and Q. Then Equation (5) in finite-difference form can be used

to find new estimates of P and Q using the updated values of x and y. Solving

Equation (5) for P and Q yields
[a [ (x Y Iyr _ n nn Y, - ) Y q )[(y -v~ x .) + y(x yq -]yJx

(7)
n= fa(yrx , -x v.) + y(y x - x Y )I/J3

6



Figure 2 - Poisson Coordinate System with Unequal Spacing on Two Boundaries



where the superscripts indicate iteration level. Solving Equation (2) for P n- and

Q n- yields

pn-I__ )/j
P = [a(x y - y x )-2 (x y - y nx n)+y(xnYn - y nxn

(8)

Q n-i = [t(y xU - x y )-2B(y x - x y n)+y(y xTn - x y n)]/J3

Comparison of Equations (7) and (8) shows that

pn = pn-i + 26(xny _ yx )/j3  (9a)

Qn = Qn-i + 28(y x q - x&y n)/J 3  (9b)

Thus, solving Equations (2) and (5) iteratively is equivalent to using Equations

(2) and (9) in an iterative scheme. Note that, according to Equation (9), if

n n-1 n n-1
0, then P = P and Q = Q and the iteration process for P and Q will have

converged.

Unfortunately, the system formed by Equations (2) and (9) cannot handle the

test problem. This can be demonstrated by considering what happens in an attempt

to achieve the orthogonal coordinate system of Figure 2 by iterating according to

Equations (2) and (9), with the coordinate system of Figure I as a starting point.

consider the local grid configurations in Figures 3(a) and 3(b), both of which

appear in Figure 1. Equation (9) predicts an initial Q (QO = 0) of different sign

for the two configurations, even though the ultimate Q desired is, according to

Equation (6), uniform over the region. Thus iterating according to Equation (9)

leads to deterioration of the system in part of the region, and the calculations

diverge. This failure is not of the basic system of Equations (2) and (5) but

rather of the iterative method of solving the system.

Further study of Figure 3 can lead to an improved method. Equation (9)

represents an adjustment of the source term Qij depending on ij" Yet the

8
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jio, j

j+i

1-1,1

Figure 3a - 0 Figure 3b - 0

Figure 3 -Local Grid Configuration
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configurations in Figure 3 do not, by themselves, yield any information about the

desired movements of the grid point (i, j). Rather, Figure 3(a) suggests a move-

ment of the point (i-l,j) downward and (i+l,j) upward to improve orthogonality.

This leads to a modification of Equation (9b) of the form

Qn+l n • (lOa)i-1 = _Qi-j +  ijIyx F x Yn/~i-l'sj

ii+lj - -yx X Yr)/J3Ii+llj

which will move points in a desirable manner in both Figures 3(a) and 3(b).

Replacing i by i+1 in Equation (Ia) and by i-I in Equation (lOb) and then adding

the results yields

n+1 n + i+l,J - lj )/j
Qij Qij 2 (y x n xy n ij

or

n+l n
Qn Q + Qn + )/ill - x(yla)ij = ij (y -xx ij

Equation (Ila) seems to provide a workable scheme along with

pn+l P + 6 I(x Y - Y x ) / J 3  
(ib)i3 ii n n YnX) -  i

which is arrived at through similar arguments.

The coordinate system shown in Figure 4, which is almost identical to that of

Figure 2, was generated from the initial system of Figure 1 in 1500 iterations

using Equations (2) and (11). Overrelaxation was used in the source term iteration

in an unsuccessful attempt to accelerate the convergence.

A nonorthogonal mesh with nonuniform boundary coordinate spacing in both vert-

ical and horizontal directions, as shown in Figure 5, was used as the initial guess

in a further test of the system of Equations (2) and (Ii). In this case both P and

10
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Figure 4 - Orthogonal Coordinate Systen with Unequal Spacing on Two Boundaries
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Figure 5 -Nonorthogonal Coordinate System with Unequal Spacing oii all Boundaries
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Q source terms had to be determined. The result after 1000 iterations is shown in

Figure 6. The "waviness" of the mesh, even after so many iterations, Indicates the

convergence difficulties of this method which may preclude it in many cases as a

useful scheme for generating orthogonal grids.

In applying Equations (2) and (11) we are attempting to find a coordinate sys-

tem with source terms P and Q such that

F~=~ 0 (12)

The solution i3=constant to Equation (12) exists only if it is consistent with the

boundary data. Only at the corners of the computational region is 3 specified in

advance. Thus we can hope for a solution if 6 is the same at all corners and for

an orthogonal solution only when =0 at the corners.

A different approach to this orthogonal grid problem is to bypass the Poisson

equations altogether and to choose a generating system based entirely on

Once the grid points have been suitably positioned in the physical region, the

forcing functions for the Poisson system that would generate this configuration

could be found from Equation (7).

Even though = 0 is the condition for orthogonality, this equation alone is

not sufficient for obtaining the required transformation. Two equations are

needed, since we must find both the x and y coordinates of the transformed points.

As a new generating system, consider Equation (12). Expanding Equation (12)

gives

F; x F;F +; X n+y ; y V y 0 (13a)

*1 X nn + xFnxn + YF nl+ yF;n = 0 (13b)

To compute the transformation, Equations (13a) and (13b) are combined as follows:

13



r4

Figure 6 - Nearly Orthogonal Coordinate System with Unequal Spacing
on all Boundaries
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the product of Equation (13a) and x is added to the product of Equation (13b)

and x-, yielding

x2 x + x 2 X + 2x x x + xnYY +
r) ri n n r) r) r r

(14a)
+ (x yr + x y )y = 0

the product of Equation (13a) and y is added to the product of Equation (13b)

and y., yielding

v2 y + yy + 2yy y + + X y x

(14b)

+ (xy + x'Y )x )x 0 = 0

The reason for replacing Equations (13) with Equations (14) is to obtain a non-zero

coefficient for xij and yij in the finite-difference forms of Equations (14a) and

(14b). This eliminates the possibility of dividing by zero in the iteration pro-

cess. Each derivative in Equations (14a) and (14b) is replaced by the appropriate

central difference formula and the system is solved iteratively using successive

overrelaxation.

The system of Equation (12) not only successfully generates the orthogonal

grid of Figure 2 but also generates the acceptable coordinate system of Figure 7

from the initial system of Figure 5 in 500 iterations, half the number of itera-

tions needed to generate the unacceptable system of Figure 6 with Equations (2) and

(1I).

FURTHER EXAMPLES

In each of the final six examples, we show a nonorthogonal coordinate system

generated by Equation (2) with P - Q - 0 (a Laplace system) and a coordinate system

generated by Equation (12). The first of these examples, shown in Figure 8, is a

simply-connected region with one convex boundary. Next we have a similar region

with a concave rather than convex curved boundary as seen in Figure 9. Note that

15



Figure 7 -Orthogonal Coordinate System Generated by ~



Figure 8a Nonorthogonal

Figure 8b -Orthogonal

Figure 8 -Coordinate System for Region with Convexc Boundary
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the orthogonal mesh must have rather fine spacing near the concave upper boundary

to accommodate the curvature. The fine mesh spacing raises a question concerning

the possibility of a singularity in this vicinity. This is a valid question, one

that needs to be considered each time the boundary-fitted coordinate technique is

used since almost any generating system can produce unacceptable meshes for partic-

ular regions. To verify that the fine mesh spacing in Figure 9b does not indicate

a singularity in the transformation, we have refined the mesh. Figure 10 compares

two different grids, one coarse with 1681 points and the other fine with 6561

points, generated for the concave region. The fact that corresponding grid lines

are in about the same position in both meshes confirms that the coarse discretiza-

tion yields a good approximate solution to the exact problem. A further confirma-

tion comes from consideration of the Jacobian at the midpoint of the upper boun-

dary. The value of J=0.00186 computed on the coarse mesh is seen to agree very

well with J=0.00J047 on the fine mesh when it is taken into account that these quan-

tities should differ by a factor of four because of the discretization details.

There is no indication of a zero Jacobian in the region.

In order to demonstrate some of the problems that can arise, we attempted to

generate an orthogonal mesh on a region similar to the previous one but with

greater curvature of the concave boundary. The grid shown in Figure Ila was gen-

erated by Equation (2) with P-EQ EO while the unacceptable grid in Figure llb was

generated by the system of Equation (12). Of course an unacceptable mesh such as

this one with crossing lines indicates a singular transformation which can often

lead to numerical difficulties. But problems like this can also arise from itera-

tive schemes based on the Poisson system if the forcing functions are not chosen

carefully. To verify this we computed directly forcing functions P and Q using

Equation (2) and x and y given as in Figure llb. We then solved Equation (2)

19
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iteratively for x and y using this P and Q, thus regenerating the grid of Figure

lib.

As the next example, consider a doubly-connected region bounded by concentric

circles as shown in Figures 12 and 13. Since this region is symmetric to a line

through the center, each grid was generated for half the region and reflected in

the line of symmetry. The symmetry line was treated as a boundary with fixed coor-

dinate distribution, thus assuring that a = 0 at the corners of the computational

region. The spacing on the outer boundary, but not on the inner boundary, was uni-

form. Had the spacing on both boundaries been uniform, the grid produced by the

Laplace generating system (Figure 12a) would have been the usual polar coordinate

system which is orthogonal. In Figure 12b, the line of symmetry was taken as a

horizontal line through the center of the figure while the line of symmetry for

Figure 13 was a vertical line through the center. Interestingly, the two orthogo-

nal grids thus generated (Figures 12b and 13) are quite dissimilar as a result of

different points being held constant after the same initial guess.

For a final test of the method, we consider a square region with the coordi-

nates distributed uniformly on three boundaries, nonuniformly on the fourth. Fig-

ure 14a shows a nonorthogonal grid with 441 points and Figure 14b a converged solu-

tion to Equation (12) with $ _- 0.00020 throughout the field except on the boun-

daries. In an attempt to improve the orthogonality, the number of grid points was

increased to 1681 as seen in Figure 15. This refinement of the grid did not

improve the orthogonality. Thus we believe that no orthogonal mesh exists for this

configuration and that the existence of a numerical solution with a small non-

zero B results from the weak connection between the interior grid points and the

corner points, the only points where - 0 is enforced.

22
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Figure 12a -Nonorthogonal

Figure 12b -Orthogonal

Figure 12 -Coordinate System for Annular Region

(Horizontal Symmetry Line)
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Figure 13 - Orthogonal Coordinate System for Annular Region

(Vertical Symmetry Line)
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Figure 14a -Nonorthogonal.

t-~

Figure 14b -Orthogonal

Figure 14 -Coordinate System with Unequal Spacing on One Boundary (441 Point,,)
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SUMMARY

Orthogonal boundary-fitted coordinate systems can be generated for a specified

boundary coordinate distribution by the system of Equation (2) if P and Q can be

found such that 6 = 0. One way to do this would be to solve the combined system

of Equations (2) and (6). Iterative solution of this system using Equations (9)

diverged on a simple test problem. An alternative iterative scheme given by Equa-

tions (2) and (II) converged extremely slowly for simple test problems. An itera-

tive method based on the solution of Equation (12) rather than on the Poisson gen-

erating system had better convergence properties and was used to generate orthogo-

nal boundary-fitted systems for several test problems.

While questions remain concerning the existence and uniqueness of orthogonal

coordinate systems, and although there is much room for improvement in the methods

for developing them, the generating methods presented here add to the available,

useful techniques for constructing these systems. Of course, it must be realized

that a particular orthogonal coordinate system is not necessarily better than any

given nonorthogonal system. In general, it seems beneficial to require orthogonal-

ity whenever it does not lead to a serious loss of other desirable coordinate sys-

tem properties.
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